Arthropod pests represent an important threat to agricultural production, causing both direct feeding damage and transmitting important diseases. Without pest control, yield losses are typically around 20% and can be considerably higher depending on the crop/pest. Currently, integrated pest management (IPM) is considered the most effective and environmentally sensitive approach to combatting pests, integrating cultural practices and the use of chemical and biological control measures. Indeed, the overall objective of the EU in its directive 2009/128/EC is to establish “... a framework to achieve the sustainable use of pesticides by reducing the risks and impacts of pesticide use on human health and the environment and promoting the use of Integrated Pest Management and of alternative approaches or techniques such as non-chemical alternatives to pesticides”.

Chemical pesticides have proven to be highly effective in controlling pests and are in part responsible for the substantial increase in food production over the last 60 years. Although their chemical, environmental and toxicological properties have been improved, their intensive use, and in some cases misuse, has led to the evolution of resistance in many pest populations in the field and in some cases contributed to environmental contamination. Furthermore, only 26% of the approximately 1000 active substances on the market in 1993 have passed the recently introduced harmonised EU safety assessment resulting in a limited arsenal of active compounds for control programs. Therefore, a major goal of agrochemical companies is to design highly specific insecticides, targeting the pest but with minimal or no toxicity to beneficial organisms. However, the cost of bringing a new pesticide to market is now very high and it is a lengthy process, limiting the number of compounds becoming available.

It is of the upmost importance to protect those pesticides, with a good environmental profile and proven efficacy in controlling target pests, from the evolution of resistance in field populations. We are contributing to this goal through four independent research lines:

 
 

González-Cabrera, J., S. Rodríguez-Vargas, T. G. Davies, L. M. Field, D. Schmehl, J. D. Ellis, K. Krieger, and M. S. Williamson. 2016. Novel Mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS One 11: e0155332.

http://www.ncbi.nlm.nih.gov/pubmed/27191597 



O'Reilly, A. O., M. S. Williamson, J. González-Cabrera, A. Turberg, L. M. Field, B. A. Wallace, and T. G. Davies. 2014. Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites. Pest Manag Sci 70: 369-377.

http://www.ncbi.nlm.nih.gov/pubmed/23589444 



González-Cabrera, J., T. G. E. Davies, L. M. Field, P. J. Kennedy, and M. S. Williamson. 2013. An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS ONE 8: e82941.

http://dx.doi.org/10.1371%2Fjournal.pone.0082941